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Abstract—Feature extraction and feature selection have been regarded as two independent dimensionality reductionmethods in most

of the existing literature. In this paper, we propose to integrate both approaches into a unified framework and design an unsupervised

linear feature selective projection (FSP) for feature extraction with low-rank embedding and dual Laplacian regularization, with the aim to

exploit the intrinsic relationship among data and suppress the impact of noise. Specifically, a projectionmatrix with an l2;1-norm

regularization is introduced to project original high dimensional data points into a new subspacewith lower dimension, where the l2;1-norm

regularization can endow the projection with good interpretability. We deploy a coefficient matrix with low rank constraint to reconstruct

the data points and the l2;1-norm is imposed to regularize the data reconstruction errors in the low-dimensional subspace andmake FSP

robust to noise. Furthermore, a dual graph Laplacian regularization term is imposed on the low dimensional data and data reconstruction

matrix for preserving the local manifold geometrical structure of data. Finally, an alternatively iterative algorithm is carefully designed for

solving the proposed optimizationmodel. Theoretical convergence and computational complexity analysis of the algorithm are also

provided. Comprehensive experiments on various benchmark datasets have been carried out to evaluate the performance of the

proposed FSP. As indicated, our algorithm significantly outperforms other state-of-the-art methods for feature extraction.

Index Terms—Dimensionality reduction, feature extraction, feature selection, subspace learning, low rank representation, graph Laplacian

regularization

Ç

1 INTRODUCTION

IN many practical applications of data mining andmachine
learning, the original data is often represented as high

dimensional features [1], [2], [3], [4], [4], [5], [6], [7], [8], [9],
[10]. Since redundant and noisy features are inevitably
mixed in high-dimensional data, directly dealing with them
not only takes intensive memory and computational cost,
but also degenerates the performance of learning tasks such
as clustering and classification [11], [12], [13], [14], [15], [16],
[17], [18]. This is well known as “curse of dimensionality”
[19], [20]. As a consequence, dimensionality reduction has

been intensively studied and achieved fruitful research
results in the past few decades [2], [3], [4], [8], [21], [22], [23],
[24], [25], [26]. Its aim is to represent the original high dimen-
sional data in a lower and more discriminative dimensional
space, in which the intrinsic structure of original data can be
better revealed.

There are mainly two kinds of methods for dimensional-
ity reduction: feature selection based methods and feature
extraction based methods [27], [28], [29]. Feature selection
techniques do not alter the original features, but aim at
obtaining a subset of them. Thus the original semantics of
features can be well preserved. Large amounts of feature
selection methods including unsupervised [30], [31], [32],
[33], [34], [35], [36], [37], [38], semi-supervised [39], [40], and
supervised [41], [42] ones have been proposed. Among these
methods, unsupervised ones, which aim to select a feature
subset from original features without using the labels of data
samples, have received much attention recently due to their
practicality since it is laborious and expensive to obtain the
data labels inmany practical applications.

Different from feature selection based methods, feature
extraction based ones aim to learn a projection to project orig-
inal high-dimensional feature space into a new subspace
with lower dimension. Thus, the features in the new space
are different to original ones. Among this kind of approaches,
the most representative ones including principal component
analysis (PCA) [43], which maximizes the variance of
samples during the projection process, linear discriminant
analysis (LDA) [44], which maximizes the inter-class distan-
ces and minimizes the intra-class distances of data points
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during the projection process and their variants such as scat-
ter difference discriminant criterion [45], kernelized LDA
[46], model-based discriminant analysis [47] bilateral PCA
[48], regularized LDA [49], to name just a few.

In recent literatures, researchers demonstrate that high
dimensional data in practical applications substantially lies
in or approximates a smooth nonlinear manifold with lower
dimension. To this end, manifold learning based dimension-
ality reduction approaches have been proposed to uncover
the intrinsic manifold geometric structure of data during the
projection process. Among these approaches, representative
ones include isometric featuremapping (ISOMAP) [50], Lap-
lacian eigenmaps (LE) [51], [52] and Locally Linear Embed-
ding (LLE) [53]. In the previous work [54], Yan et al. claimed
that LLE, ISOMAP and LE can be unified into a general
graph embedding based dimensionality reduction frame-
work. Though these manifold learningmethods have earned
great success in revealing the inherent nonlinear structure
hidden in data, they cannot handle the “out-of-sample”
problem. In order to address this problem, some other repre-
sentative approaches such as locality preserving projections
(LPP) [55], neighborhood preserving projections (NPP) [56],
neighborhood preserving embedding (NPE) [57], sparsity
preserving projections (SPP) [58] and isometric projection
(IsoP) [59] have been developed. As a linear version of LE,
LPP learns a projection which preserves the local manifold
geometry of the original data by an affinity graph regular-
izer. Then the learned projection can be directly used to proj-
ect new data points into new lower-dimensional space.
Based on the basic model of LPP, some extensions have
also been proposed to improve the performance, e.g., semi-
supervised LPP [60], orthogonal LPP (OLPP) [26], [61], [62],
[63], [64]. Similar to LPP, NPE aims to preserve the local
neighborhood structure of data, while the affinity graph [65]
in NPE is constructed by using a local squares residual regu-
larization term. NPP learns the global structure by utilizing
the local neighborhood relations. Different to LPP and NPE,
SPP [58] preserves the sparse representation relationship of
the data points by using a ‘1-norm induced sparsity regulari-
zation term. Although the manifold learning based methods
demonstrate promising performance, the intrinsic local man-
ifold geometrical structure of data can be easily effected by
various kinds of noises such as illumination change, corrup-
tions and occlusion.

Recently, the low-rank representation (LRR) [66], [67],
which can construct robust graph for many data process-
ing tasks, has gained much attention due to its robustness
to noises and corrupted data. LRR is under the assumption
that high dimensional data points often intrinsically lie on
a low dimensional subspace, thus the rank constraint is
imposed on the coefficient matrix for data representation.
During last few years, a various of LRR methods have
been introduced for learning tasks such as robust PCA
(RPCA) [68], non-negative low rank and sparse graph
(NNLRS) [69]. By considering the manifold structure of
data, the Laplacian regularized LRR was also built [70],
[71]. Considering that traditional LRR cannot handle the
data that lies in joint subspaces, Tang et al. proposed a
structure LRR model by combining dense block regulari-
zation and sparse representation [72], [73]. You et al. [74]
presented a scalable sparse subspace clustering by

orthogonal matching pursuit, their method can perform
well no matter the subspaces are independent or disjoint.
Peng et al. [75], [76] proposed a method for clustering both
dependent and disjoint subspaces by eliminating the effect
of the errors from the projection space.

Although the LRR based methods work well by learning
a representation low rank matrix for subspace clustering,
they also suffer the “out-of-sample” problem. To solve this
problem, Bao et al. [77] proposed a robust projection learn-
ing model named inductive RPCA (IRPCA). In recent years,
a variety of projection learning methods based on LRR have
been proposed to make the learned projection be robust to
noises mixed in data points such as occlusions and corrup-
tions. Lu et al. [78] proposed to learn a feature projection
with low-rank being well preserved (LRPP) for image classi-
fication task. In LRPP, a projection matrix is learned to proj-
ect original data into a low dimensional subspace, during
the projection process, the low rank property of the data
representation matrix is preserved. In [25], Wong et al. inte-
grated the projection learning into traditional low rank
representation and proposed a low-rank embedded projec-
tion (LRE). In such a manner, the learned projection is
robust to noises such as data corruptions and occlusions. In
order to reduce the complexity and sensitivity to dimen-
sions, We et al. [79] proposed a low-rank preserving projec-
tion learning based on graph regularized reconstruction
(LRPP_GRR), they combined a data reconstruction matrix
and feature projection matrix together to perform the learn-
ing process.

As discussed above, preservation of the intrinsic manifold
geometrical structure of data and robustness to noises are two
critical issues for projection based feature extraction. In this
work, we introduce an unsupervised linear feature selective
projection (referred to as FSP briefly) for feature extraction
with low-rank embedding and dual Laplacian regularization.
Different from previous projection based feature extraction
methodswhich lack interpretability during the projection pro-
cess, i.e., they only extract the low dimensional features from
original data but neither interpret how the projection works
nor reflect the importance of different features, our method
possesses the ability for simultaneously feature selection and
feature extraction. On one hand, we impose the row sparsity
on the projection matrix to enable the model to jointly select
the key features from all of original features for composing the
low dimensional subspace, i.e., the learned projection is more
interpretable. On the other hand, we use the low-rank repre-
sentation to enable the model be robust to noises. In addition,
a dual graph Laplacian regularization term is integrated into
ourmodel for preserving the localmanifold geometrical struc-
ture of original data. In brief, we summarize the major contri-
butions of this work as follows:

1) Proposing an unsupervised linear feature selective
projection (FSP) for feature extraction with low-rank
embedding and dual Laplacian regularization, which
can select important features for composing the low
dimensional subspace.

2) The proposed FSP integrates dimensionality reduc-
tion, feature selection and feature extraction as well
as low-rank representation learning into a unified
framework.
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3) An alternatively iterating algorithm is well designed
for solving the optimization problem of FSP, and the-
oretical analysis of its convergence and computa-
tional complexity are also provided.

4) Comprehensive experiments have been carried out to
validate the efficacy of the proposed FSP, and experi-
mental results demonstrate the superiority of FSP
when comparedwith other state-of-the-art methods.

We organize the rest of this paper as follows. Some related
workswill be reviewed in Section 2. Thenwe present the pro-
posed FSPmodel in Section 3, the optimization algorithm for
solving the objective function is also presented in this section.
Theoretical convergence and computational complexity
analysis of the algorithm for solving FSP and connection
with previous works are presented in Section 4. Experimen-
tal results and comparison are shown in Section 5. Finally,
we draw the conclusion in Section 6.

2 RELATED WORKS

Since our work focuses on projection based feature extraction,
we first briefly review some related projection learningworks.
Throughout this paper, scalars are denoted as lowercase let-
ters. Matrices and vectors are denoted by bold uppercase let-
ters and bold lowercase letters, respectively. A data matrix is
denoted as X ¼ ½x1;x2; . . . ;xn� 2 Rm�n, which contains n
samples with m dimension. The ith row and jth column of
matrix M are denoted as mi and mj, respectively. For a

square matrixM, TrðMÞ represents its trace. The transpose of
matrix M is written as MT . For any two matrices, their stan-
dard inner product is denoted as hA;Bi. Im represents an
identity matrix with size m�m (we use I instead if the size
is obviously known). For matrix M, its ‘2;1-norm is defined

as jjMjj2;1 ¼
Pn

j¼1 jjmjjj ¼
Pn

j¼1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 Mij
2

q
. jjMjj� is the

nuclear norm and jjMjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
Pn

j¼1 Mij
2

q
is the well-

known Frobenius norm. Projection based feature extraction
aims to learn an optimal projection coefficient matrixP ¼ ½p1;
p2; . . . ;pd� 2 Rm�d with d < m, which can transform original
m dimensional data into a d dimensional subspace.

As mentioned in the introduction section, the earliest pro-
jection based feature extraction methods include PCA, LDA,
etc. For capturing the local manifold geometrical structure of
data, a variety of manifold learning based methods have
been proposed, i.e., NPE, LPP and LLE.However, there often
exists noises in the original data, which limits the perfor-
mance of previous projection learning methods. In recent
years, thanks to the development of LRR models, some LRR
based feature extraction approaches have been put forward,
thesemethods aremore robust to noise than traditional ones.
Here, we introduce two LRR based feature extraction meth-
ods (LRPP and LRE) which we think to be themost related to
our work.

2.1 Low-Rank Preserving Projections (LRPP)

As a combination of LPP and LRR, LRPP [78] uses the low
rank data representation coefficient matrix to construct an
affinity graph for local manifold geometrical structure pres-
ervation, the projection matrix and data representation
matrix are learned simultaneously by regularizing the low
rank of data representation and sparsity of noises. Compared

to traditional LPP which constructs the affinity graph by
using the pair-wise euclidean distances, LRPP jointly learns
the affinity graph and projection matrix. The objective func-
tion of LRPP is constructed as follows:

min
P;C;E

1

2

Xn
i;j¼1
ðCij þCjiÞjjPTxi �PTxjjj22 þ ajjCjj�

þ bjjEjj2;1
s:t: X ¼ XCþE;

(1)

where P and C are the projection matrix and data represen-
tation matrix need to be learned, and E is the noise matrix
under sparsity assumption. The first term in Eq. (1) is used
to preserve the local manifold geometrical structure of data
in the projected subspace, the nuclear norm imposed on C
is used to regularize the low rankness of the data represen-
tation coefficient matrix, the last term imposes the sparsity
on the noise matrix. As can be seen, LRPP can effectively
learn a robust projection matrix with the local manifold geo-
metrical structure of data being well preserved.

2.2 Low-Rank Embedding (LRE)

By considering that the LRR is robust to the noise, corrup-
tions and occlusions, Wong et al. [25] integrated the LRR and
feature projection together to formulate a low-rank embed-
ding (LRE) model for feature extraction. LRE is also under
the LRR based data representation assumption and its objec-
tive function is formulated as follows:

argmin
C;P

rankðCÞ þ � PTX� PTXC
�� ��

2;1
;

s:t: PTP ¼ I:
(2)

In Eq. (2), the ‘2;1-norm used for regularizing the reconstruc-
tion term can make the model more robust than the Frobe-
nius norm in cope with the sample-specific corruptions and
outliers [42]. Since minimizing the rank constrained problem
is NP-hard, the LRE model can be transferred to the follow-
ing approximated problem by using nuclear norm instead of
the rank function [80]

argmin
C;P
jjZjj� þ � PTX� PTXC

�� ��
2;1
;

s:t: PTP ¼ I:
(3)

Eq. (3) can be solved by using the argument Lagrangian
multiplier method [25].

3 FEATURE SELECTIVE PROJECTION

In this section, we present the detailed elaboration of our
proposed method, i.e., feature selective projection (FSP). The
motivation of FSP will be explained first, and the objective
function and solutions are given successively.

3.1 The Motivation of FSP

Due to its powerful ability to explore the embedded low
dimensional subspace structure of data, LRR has attracted
more andmore attention. It should be noted that the LRR can
still handle the case that the data contains noises or outliers,
which demonstrates the robustness of LRR for subspace
clustering [67]. However, LRR lacks the functionality for
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dimensionality reduction, which results in the deficiency of
LRR in feature extraction. Thus, LRE [25] and LRPP [78] inte-
grate LRR and feature projection learning into a unified
framework to make feature extraction more robust to noises.
Since the extracted low-dimensional features can be regarded
as a linear combination of original features, one drawback of
previous methods lies in that the learned projection matrixP
lacks interpretability, i.e., it only projects original data into a
lower dimensional subspace but cannot reflect which fea-
tures are critical for combining the low-dimensional features.
In other words, they cannot perform feature extraction and
feature selection jointly. In the following we use a detailed
equation to elaborate this problem. LetY 2 Rd�n with d < m
denotes the low-dimensional projection of original data X,
i.e., Y ¼ PTX, then we have YT ¼ XTP each row of Y can
be expanded as following form:

y1 ¼ x1p1;1 þ x2p1;2 þ � � � þ xmp1;m

y2 ¼ x1p2;1 þ x2p2;2 þ � � � þ xmp2;m

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
yd ¼ x1pd;1 þ x2pd;2 þ � � � þ xmpd;m:

(4)

As can be seen from Eq. (4), the low-dimensional repre-
sentation of X is linearly combined by its original features,
and each row of the projection matrix P can be used to mea-
sure the importance of corresponding feature dimension for
combining the low-dimensional representation. This moti-
vates us to add some constrains on P to select discrimina-
tive features for dimension reduction.

Another important issue is that LRR does not take the
non-linear manifold geometric structure implied in data
into consideration, thus it cannot capture the locality among
data points during the learning process. To this end, we
impose a dual graph based Laplacian regularization term
for preserving the local structure of data in the projected
lower dimensional subspace. The dual graph based Lapla-
cian regularization term preserves the locality among data
from following two aspects:

1) If two data points xi and xj are close to each other in
original space, their corresponding mappings in the
projected lower dimensional space, i.e., yi and yj

should be also close to each other;
2) If two data points xi and xj are close to each other in

original space, their representation coefficients should
also be similar to each other.

3.2 Formulation of FSP

In our work, feature selection and feature extraction are
organically integrated into a uniform framework, and the fea-
ture selection can serve to feature extraction. Thus, we aim to
learn a feature selective projection for dimension reduction.
Similar to other LRRmethods, in order to make the proposed
method robust to noises, the ‘2;1-norm is leveraged to regular-
ize the data reconstruction errors in the projected subspace.
Consequently, we formulate the mathematical model of our
FSP as follows:

min
P;Z
jjPTX�PTXZjj2;1 þ �jjZjj� þ bRðPÞ þ gLðP;ZÞ;

s:t: PTXXTP ¼ I;
(5)

where the first term is used to measure the reconstruction
errors. Compared to the Frobenious norm, the ‘2;1-norm
used here is more robust to noises such as sample outliers
and sample-specific corruptions [25], [42], [67]. The second
term constrains that the projected data points in the lower
dimensional subspace can be linearly reconstructed by them-
selves by using a representation coefficient matrix with low
rank constraint. The third term RðPÞ is a constraint used to
enable the feature selection functionality of projectionmatrix
P, and the forth term LðP;ZÞ is the dual Laplacian regulari-
zation term for locality preservation. During the feature pro-
jection process, we aim to reduce the redundancies of
original data to the maximum extent, thus the PCA-like con-
straint PTXXTP ¼ I is used to conduct subspace learning
[81], [82], which intends to make the low-dimensional fea-
turesmore discriminative.

Eq. (5) aims to find an optimal low rank reconstruction
matrix in the low-dimensional data space and a feature selec-
tive projectionmatrixwhich projects original data points into
the lower dimensional subspace. During the projection and
reconstruction process, the dual Laplacian regularization
term is used to preserve the local manifold geometrical struc-
ture of original data.

As depicted by Eq. (4), the low-dimensional representation
of X is linearly combined by its original features, and
each row of P weighs the importance of corresponding fea-
ture dimension for combining the low-dimensional represen-
tation. Thus the discriminative features should be assigned
with larger weights while unimportant features should be
suppressed. By considering this point, we impose the
‘2;1-norm regularization on PT to enable the row sparsity of
P. Therefore, we have

RðPÞ ¼ jjPT jj2;1: (6)

For the dual Laplacian regularization term, we constrain
that if two data points xi and xj are close to each other in
original data space, their mappings and representation coef-
ficients in the projected lower dimensional subspace should
also be similar to each other. To this end, we construct the
following model:

LðP;ZÞ ¼ 1

2

Xn
i;j¼1
jjPTxi �PTxjjj2Sij þ 1

2

Xn
i;j¼1
jjzi � zjjj2Sij;

(7)

where S denotes the affinity matrix of data points. The ijth
element of S is often defined by using following Gaussian
kernel function (other distance measuring functions can be
also used instead)

Sij ¼ exp
jjxi�xjjj2
�2s2

� �
; xi 2 N � xj

� �
or xj 2 N � xið Þ;

0; otherwise;

8<
:

(8)

where N �ðxiÞ represents the data points set of � nearest
neighbors of xi and s is the kernel width. Eq. (7) can be
regarded as the graph embedding term [83] and it is easy to
be reformulated as the following trace form:

LðP;ZÞ ¼ TrðPTXLXTPÞ þ TrðZLZT Þ; (9)
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where L 2 Rn�n represents the corresponding Laplacian
matrix with L ¼ D� S, whereD is a diagonal degree matrix
withDii ¼

P
j Sij.

By combining Eqs. (5), (6) and (9) together, we have the
final objective function of our FSP as following:

min
P;Z
jjPTX�PTXZjj2;1 þ �jjZjj� þ bjjPT jj2;1

þ gfTrðPTXLXTPÞ þ TrðZLZT Þg;
s:t: PTXXTP ¼ I:

(10)

As can be seen from Eq. (10), FSP jointly integrates feature
extraction, feature selection and low rank representation into
a unified framework, inwhich the redundancies among orig-
inal data can be efficiently reduced for learning tasks. There-
fore, the proposed FSP can work for both feature selection
and feature extraction, and the feature selection and feature
extraction can boost each other during the optimization pro-
cess. In contrast, both LRPP and LRE only work for feature
extraction.

3.3 Optimal Solution of FSP

In this section, we give the detailed optimization steps of
FSP. Since it is difficult to simultaneously optimize the
two variables in (10), we develop an alternatively iterative
algorithm to solve it. Specifically, we first optimize Z with
fixed P and then optimize Pwith fixed Z.

3.3.1 Optimize Z with Fixed P

When P is fixed, solving Z can be transformed to minimize
following object function:

min
Z
jjPTX�PTXZjj2;1 þ �jjZjj� þ gTrðZLZT Þ; (11)

We use the linearized alternating direction method with
adaptive penalty (LADMAP) [84] to solve Eq. (11). In order
to make the objective function separable, an auxiliary vari-
able J is first introduced to convert Eq. (11) to the following
equivalent problem:

min
Z;J
jjPTX�PTXZjj2;1 þ �jjJjj� þ gTrðZLZT Þ;

s:t: Z ¼ J:
(12)

Eq. (12) can be solved by using the augmented Lagrangian
method (ALM), and the corresponding augmented Lagrang-
ian function can bewritten as follows:

HðZ;J;M;mÞ ¼ jjPTX�PTXZjj2;1 þ �jjJjj� þ gTrðZLZT Þ
þ < M;Z� J > þm

2
jjZ� Jjj2F ;

(13)
where M is the introduced Lagrange multiplier, m > 0 is a
penalty parameter. Eq. (13) is an unconstrained problem. Z
and J can be updated iteratively by fixing each other.

The optimal J can be obtained by

min
J

�jjJjj� þ
m

2
jjZ� JþM

m
jj2F ; (14)

of which the solution can be obtained by using the Singular
Value Thresholding (SVT) operator [85].

Then Z can be solved by

min
Z
jjPTX�PTXZjj2;1 þ

m

2
jjZ� JþM

m
jj2F þ gTrðZLZT Þ:

(15)
For solving Z, we deploy the iterative reweighted least-
squares (IRLS) algorithm [86]. By taking the derivative of
Eq. (15) w.r.tZ, and setting the derivative to zero, thenwe get

XTPPTXZþ m

2
ZG�1 þ gZLG�1

�XTPPTXþ ðM
2
� mJ

2
ÞG�1 ¼ 0;

(16)

where G is a diagonal matrix and its ith diagonal entry is
calculated as

Gi;i ¼ 1

2jjqijj2
; (17)

where qi denotes the ith column of PTX�PTXZ. Eq. (16)
is a Sylvester equation [87] with the form

AZþ ZB ¼ C; (18)

with

A ¼ XTPPTX;

B ¼ m

2
G�1 þ gLG�1;

C ¼ XTPPTXþ ðmJ
2
�M

2
ÞG�1:

(19)

Since A can be ensured to be strictly positive definite, the
Sylvester Eq. (18) has a unique solution.

Then the multiplier and the parameter at each step can be
updated as follows:

M Mþ mðZ� JÞ;m minðrm;mmaxÞ; (20)

where r > 0 is manually set parameter.
In summary, the detailed steps for solving Z can be

described by Algorithm 1.

Algorithm 1. Iterative Algorithm for Solving Z

Input: Data matrix X 2 Rm�n, projection matrix P, parame-
ters a and g.
Initialization: Z ¼ 0, J ¼ 0, M ¼ 0 and G ¼ I, m ¼ 10�6,
mmax ¼ 106, and r ¼ 1:1.
while not converged do

1. Update J using (14);
while not converged do
2.1 Update Z by solving Eq. (18);
2.2 UpdateG using Eq. (17);

end while

3. UpdateM and m using Eq. (20);

end while

Output: Z and J.

3.3.2 Optimize P with Fixed Z

When Z is given, the problem for solving P becomes

min
P
jjPTX�PTXZjj2;1 þ bjjPT jj2;1

þ gTrðPTXLXTPÞ;
s:t: PTXXTP ¼ I:

(21)
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We also use the diagonal matrix G in the step for solving Z
and introduce a new diagonal matrix L and its ith diagonal
element is defined as

Li;i ¼ 1

2jjpijj2
: (22)

By integrating L into Eq. (21), we convert the problem for
solving P to the following form:

min
P

TrðPTXðI� ZÞGðI� ZÞTXTPÞ þ bTrðPTLPÞ
þ gTrðPTXLXTPÞ
s:t: PTXXTP ¼ I:

(23)

Eq. (23) can be solved by eigen-decomposition. By solving
the following minimum eigenvalues problem as described
by Eq. (24), each column of P, i.e., pi can easily obtained

½XðI� ZÞGðI� ZÞTXT þ bLþ gXLXT �pi ¼ �XXTpi: (24)

Let P ¼ ½p1;p2; . . . ;pd� be the solution of (24). Column vec-
tors piði ¼ 1; . . . ; dÞ correspond to the eigenvectors corre-
sponding to the first d smallest eigenvalues. The details for
solving P can be summaried by Algorithm 2

Algorithm 2. Iterative Algorithm for Solving P

Input: Datamatrix X 2 Rm�n, representation coefficient matrix
Z, parameter b.
Initialization:G and L.
while not converged do

1. Update P by solving (23);

2. Update L using (22);
end while
Output: P.

In a nutshell, the whole iterative optimization process of
FSP is depicted by Algorithm 3.

Algorithm 3. The Optimization Algorithm of FSP

Input: Data matrix X 2 Rm�n.
while not converged do

1. Update Z using Algorithm. (1);

2. Update P using Algorithm. (2);
end while
Output: Z and P.

4 THEORETICAL ALGORITHM ANALYSIS

In this section, we theoretically analyze the convergence and
computational complexity of the optimization algorithm for
solving the proposed FSP model. The connections between
FSP and previousworks are also discussed.

4.1 Convergence Analysis

In the step of solving Z, the exact LADMAP algorithm can
converge well, which has been generally proven in [84]. In
Algorithm 1, there are two blocks need to be updated, i.e., Z
and J, while J is the only one auxiliary variable. Thus, the
convergence of Algorithm 1 can bewell guaranteed. For solv-
ingP, the IRLS algorithmwith convergence guarantee [86] is

used to iteratively update P and L. Therefore, the conver-
gence of the optimization algorithm for solving FSP can be
well reached. In the experiments section, wewill also plot the
values of the object function (10) with iteration times on real
datasets to empirically validate the convergence property of
Algorithm (3).

4.2 Computational Complexity Analysis

We analyze the computational complexity of the optimiza-
tion algorithms for solving FSP in this section. In Algorithm
1, the main computation cost consists of updating J and Z.
For computing J, the main computational complexity comes
from the SVDwhich needsOðn3Þ. For SolvingZ, the classical
Bartels Stewart algorithm is used for the solving the Syl-
vester equation, whose complexity is Oðn3Þ. In Algorithm 2,
themain computation cost comes from computingP by solv-
ing Eq. (23), whose complexity isOðm3Þ.

4.3 Connections with Previous Works

LPP obtains widely attentions in the last decade due to its
popularity for dimensionality reduction. In LPP, the local
manifold geometrical structure of the data can be well pre-
served, it has been used in many learning models [26], [71].
In our proposed FSP model (10), the first Laplacian regulari-
zation term can be also regarded as the LPP model.

LRE simultaneously learns the feature projection matrix
and the data representation coefficient matrix in the pro-
jected lower dimensional subspace. Thus, the learned projec-
tion is robust to noises. Compared to LRE, the projection
matrix learned by FSP can measure the importance of origi-
nal features for generating lower dimensional features. In
addition, the local manifold geometrical structure of original
data is preserved by using the dual Laplacian regularization
term. It should be noted that when we set b ¼ 0 and g ¼ 0,
the main part of the FSPmodel (10) degenerates into the LRE
model (3). In other words, FSP can degenerate to LRE by
dropping the l2;1-norm regularization on PT and the dual
Laplacian regularization term.

5 EXPERIMENTAL RESULTS

In this section, we carry out a series of experiments to demon-
strate the efficacy of FSP model for image feature extraction
and classification in terms of various noises and occlusions.
We compare the proposed FSP with the classical subspace
learningmethod, i.e., RPCA, some ofmanifold learning regu-
larizedmethods, i.e., LPP, SPP, andNPE, the low-rank repre-
sentation (LRR) [66], and the recently proposed low-rank
preserving projections (LRPP) and low-rank embedding fea-
ture extraction (LRE).

5.1 Datasets

We use eight different publicly released datasets in our
experiments, including ORL [88], USPS [89], COIL20 [90],
CMU PIE (Pose29, with light and illumination change) [91],
FERET [92], Yale [93], AR [94] and MNIST [95]. Following
we present the detailed description of the datasets.

ForORLdataset, it consists of 40 distinct subjects and there
are 10 different face images for each subject. The images are
taken at different times with varying the lighting, facial
expressions and facial details. All of the images are captured
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against a dark homogeneous background and the subjects are
in an upright, frontal position (with tolerance for some side
movement).

The COIL20 dataset consists of 20 object images. For each
object, 72 gray images are taken from different view
directions.

The USPS is a handwritten digital image dataset, which
contains 11,000 images in total. The digits include “0” to
“9”, and each digit has 1,100 examples. 100 images for each
digital were randomly select from this dataset for our
experiments.

There are 41,368 face images captured from 68 subjects in
CMU PIE dataset. The images captured are under 43 differ-
ent illumination conditions, 13 different poses and four dif-
ferent expressions for each subject. In our experiments, we
choose the subsets named “C29”, “C05”, “C07”, “C09”, and
illumination indexed as 08 and 11 which involves variations
in pose for our experiment.

The FERET dataset contains a total of 14,126 images per-
taining to 1,199 individuals along with 365 duplicate sets of
images that were taken on different days. Following [78],
we also randomly choose 70 people and six images for
each individual to construct a subset for conducting our
experiments.

As to the Yale face dataset, there are 165 images of 15 indi-
viduals. For each individual, 11 images with different facial
expression or configuration are captured.

In AR face dataset, there are over 4,000 color face images
captured from 126 people which contain 70 men and 56
women. The face images were taken with different condi-
tions, including different facial expressions, lighting condi-
tions, and occlusions. The face images of most individuals
were captured in two sessions which are separated by two
weeks. In our experiments, we construct a subset by ran-
domly selecting images of 50men and 50women.

The MNIST dataset is a large dataset of handwritten dig-
its which consists of digital numbers from “0” – “9”. It con-
tains 60,000 training samples and 10,000 testing samples.

In our experiments, we use the ORL, COIL20 and USPS
datasets for evaluating the performance of FSPwith data con-
taining random pixel corruptions. For CMU PIE, FERET and
Yale datasets, we use them to test the performance of FSP
with data corrupted by block occlusions. As to AR dataset,
we use it for testing the performance of FSP with face images
corrupted by sunglasses and scarf occlusions. Finally, we use
MNIST dataset to demonstrate the efficacy of FSP in terms of
handwritten digit recognition.

For ORL, USPS, CMU PIE, FERET and Yale datasets, half
of the images per class are selected as training samples and
the rest are left as testing samples. As to COIL20 dataset, 30
images per class are selected as training samples and the
rest are used for testing. For AR face dataset, we randomly
select three neutral images and three images with sun-
glasses/scarf from session 1 as training samples. The testing
samples are constructed by seven neutral images plus three
images with sunglasses/scarf from session 2 [78]. The
images in USPS dataset and MNIST dataset are normalized
to 16� 16 and 28� 28 pixels, respectively, and the images
in other six datasets are normalized to 32� 32 pixels. We
reshape each normalized image to a vector for constructing
the feature matrix.

5.2 Experiment Setup

We evaluate the performance of FSP under various corrup-
tions by using the above mentioned datasets and compare it
with some previous typical feature extraction methods
including RPCA, LPP, NPE, SPP, LRR, LRPP and LRE.
Among these methods, RPCA is the classical subspace learn-
ing method. LPP, NPE and SPP are some manifold learning
regularized approaches. LRR aims to find the low-rank fea-
ture representation of data. LRPP can reduce the dimension-
ality of data with the global data structure being well
preserved, it can also reduce the disturbance of noises in the
data by learning a low rank weight matrix. LRE is the most
recent proposed low rank embedding feature extraction
method which jointly learns the low rank representation and
projection of data. In our experiments, for each dataset, we
randomly select half of images from each subject as training
samples and the rest are used for testing.

The neighborhood size in LPP, NPE and FSP is fixed to 5
in our experiments. The regularization parameters of all the
methods are adjusted based on grid search and the optimal
combination is determined from f0:001; 0:01; 0:1; 1; 10; 100;
1000g. The numbers of final subspace dimensions for all the
datasets are varied from 5 to 150 with step 5. We use two
common classifiers, i.e., random forest (RF) and the 1-nearest
neighbor (1-NN) to evaluate the final classification accuracy.

For each parameter combination, we independently run
all the algorithms 5 times and the averaged classification
accuracy is reported.

5.3 Experimental Results and Analysis

In this section, we will first plot the classification accuracies
obtained by different methods using different extracted fea-
ture dimensions on different datasets under different occlu-
sions/noises. Due to the space limitation, we only plot the
classification results by using the 1NN classifier. Then we
will summarize the best averaged classification accuracies
and the corresponding extracted feature dimensions of dif-
ferent methods on all of the datasets by using both the 1NN
and RF classifiers.

5.3.1 Classification Results with Random Pixel

Corruptions

For evaluating the robustness of FSP to the data with random
pixel corruptions, we add the salt and pepper noise with two
different densities (0.1 and 0.15) to the images of ORL,
COIL20 and USPS datasets. In the supplementary, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2019.2911946,
we give some examples of the original and corrupted images
under two different densities of the salt and pepper noise
from the three datasets. The classification accuracies of differ-
ent methods on this dataset with different extracted feature
dimensions are plotted in Fig. 1. As can be seen, FSP steadily
outperforms other methods under different extracted feature
dimensions.

5.3.2 Classification Results with Block Occlusions

For evaluating the robustness of FSP to block occlusions,
some black blocks are randomly added to different locations
of the images in the CMU PIE, FERET and Yale datasets.
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The added blocks are set with two different sizes: 6� 6 and
8� 8. In the supplementary, available online, we show
some examples of original images and the images corrupted
by different sizes of blocks. We plot the classification accu-
racies obtained from different methods on this dataset with
different extracted feature dimensions in Fig. 2. The results
also demonstrate the superiority of the proposed FSP,
which demonstrates its robustness to block occlusions.

5.3.3 Classification Results with Sunglasses/Scarf

Occlusions

In reality, human faces are usually occluded by sunglasses or
scarf. In this experiment, we also test the robustness of the
proposed FSP to these two kinds of occlusions. The AR face
dataset is used to conduct this experiment. In the supple-
mentary, available online, we give some examples of clean
images and images occluded by sunglasses and scarf. We
plot the classification accuracies obtained from different
methods on this dataset with different extracted feature
dimensions in Fig. 3. As can be seen, FSP has the highest clas-
sification accuracy when compared to other previous meth-
ods, which demonstrates that FSP is more robust than the
othermethods in terms of sunglasses and scarf occlusion.

5.3.4 Classification Results with Sample-Specific

Corruptions

For testing the robustness of FSP to sample-specific corrup-
tions, we randomly select half of the images from the “C29”

subset of CMU PIE dataset, and add the baboon face image
with different intensities to the selected images. In our
experiments, the intensities of the baboon image added into
the images are set to 0.2 and 0.4. In the supplementary,
available online, we show some samples of clean images
and the images corrupted by the baboon face image with
different intensities. The classification accuracies obtained
by different methods with various extracted dimensional
features on this dataset are plot in Fig. 4, it shows that FSP
has the highest classification accuracies when compared to
other methods. Thus, FSP works better in the case that the
images are mixed with the sample-specific corruptions.

5.3.5 Handwritten Digits Recognition Results

In order to test the performance of FSP in handwritten digits
recognition. We conduct experiments on the MNIST dataset

Fig. 1. Classification accuracies of different methods with different
extracted feature dimensions on the on the ORL, COIL20, and USPS
datasets under different densities of the salt and pepper noise.

Fig. 2. Classification accuracies of different methods with different
extracted feature dimensions on the CMU PIE, FERET, and Yale data-
sets with different block occlusions.

Fig. 3. Classification accuracies of different methods with different
extracted feature dimensions on the AR face dataset with sunglasses
and scarf occlusions.
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to classify each image into one of the ten digits by using FSP.
There are 60,000 training samples and 10,000 testing sam-
ples in this dataset. Similar to [78], 3,000 images from the
60,000 training samples are randomly selected to construct
the training set and 5,000 images from the 10,000 testing
samples are randomly selected to construct the test set. We
also add the salt and pepper noise with different densities
to the images for testing the robustness of FSP. In the sup-
plementary, available online, we show some clean images
and the images corrupted by different densities of salt and
pepper noise. Fig. 5 plots the classification accuracies of dif-
ferent methods on the MNIST dataset with the salt and pep-
per noises. The results also verify the superiority of our
proposed FSP.

5.3.6 Best Classification Accuracies of Different

Methods on Different Datasets

In this section, we summarize the best averaged classifica-
tion accuracies and the corresponding extracted feature
dimensions of different methods on different datasets. Due
to the space limitation, the results are shown in the supple-
mentary, available online. The results obtained by the two
classifiers, i.e., RF and 1NN are reported. As can be seen,
our proposed FSP performs better than other compared
methods in terms of classification when the datasets are cor-
rupted with various occlusions or noises. As aforemen-
tioned, the LRR is robust to a certain extent to the noisy/
corrupted data. Therefore, the LRR based methods, i.e.,
LRPP, LRE and FSP perform better than the rest methods.
In addition, manifold learning based dimensionality reduc-
tion approaches can well uncover the intrinsic geometric
manifold structure (especially the local structure) of data
during the projection process. Thus, FSP can obtain better
results than LRE, and LPP and NPE outperform RPCA in
most cases.

As to the ORL, Yale and CMU PIE face datasets, it should
be noted that the high classification accuracies of most of
the methods do not monotonically increase with the feature
dimensions. This is due to the inherent characteristics of the
human face, i.e., the facial features including eyes, ears,
nose, mouth and eyebrows can be characterized by features
with a certain dimension, faces belong to different subjects
can be well distinguished by using these features. When the
feature dimension increases, it dose not contribute signifi-
cantly to the classification accuracy. As to the COIL20 and
USPS datasets, there are no certain dimensional features can
uniformly describe different digital objects and handwritten

letters. Therefore, the higher dimension of the features, bet-
ter classification accuracies can be obtained for these two
datasets.

5.3.7 Non-Parametric Statistical Test

In order to verify whether the improvement of the proposed
FSP in term of classification performance is statistically signif-
icant, we statistically validate the classification results of dif-
ferent methods on different datasets under various noisy
conditions. Following [96], we also conduct the non-paramet-
ric pair-wised Wilcoxon test on the classification accuracies.
In our experiment, the level of significance is set to 0.05. The
p-values of FSP against other comparedmethodswith respect
to classification accuracy are shown in the supplementary,
available online. Note that a smaller p-value means that the
corresponding model is more statistically significant. As can
be seen from the results, our FSP achieves the smallest p-val-
ues on different datasets, which validates that FSP achieves
statistically significant improvements.

5.4 Parameters Sensitivity Analysis

There are three regularization parameters in FSP model, i.e.,
�, b and g. In our experiments, we choose them from f0:001;
0:01; 0:1; 1; 10; 100; 1000g by a grid search manner. In order
to analyze the parameter effect on the final classification
results, for each dataset, we show the classification accuracy
obtained by the 1NN classifier versus one of the parameters
with other two fixed. Meanwhile, the extracted feature
dimension for each dataset is set as the optimal value as
shown in the supplementary, available online. In Fig. 6, we
give the classification accuracies of FSP with different
parameters on different datasets. As can be seen, the perfor-
mance of the parameters’ variations on the eight datasets
are very similar. For different datasets, the best performance
of FSP can be obtained when � ¼ 0:1 in most cases. For b,
good results can be expected when it is set to 1. As to g,
when it varies between 10 to 100, best classification accuracy
can be reached.

5.5 The Feature Selection Property of FSP

5.5.1 Intuitive Results

As we discussed in Section 3.1, the low-dimensional repre-
sentation of original data is linearly combined by the original
features, and each row of matrix P acts as the combination
coefficients which can measure the importance of corre-
sponding feature dimension. In order to give an intuitive

Fig. 5. Classification accuracies of different methods with different
extracted feature dimensions on theMNIST dataset with different densities
of salt and pepper noise.

Fig. 4. Classification accuracies of different methods with different
extracted feature dimensions on the CMU PIE dataset with different
densities of sample-specific corruptions.
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interpretation, we use the ORL dataset to learn a projection
matrix P 2 Rm�d, and then calculated the l2-norm of each
row of P to show the feature weights. The projection matrix
and feature weight matrix are shown in Fig. 7. As can be seen,
the learned feature projection matrix is clearly with row spar-
sity. Meanwhile, Fig. 7b can highlight the most important
features on the human face, i.e., the feature points on the
mouth, nose and eyes are with larger weights than other non-
characteristic region. Therefore, the projection matrix learned
fromFSP ismore interpretable and it can select discriminative
features to combine the low-dimensional representation of
original data.

5.5.2 Quantitative Results

In order to givemore convincing results for validating the fea-
ture selection property of FSP, we compare the feature selec-
tion results of FSP with some other modern feature selection
methods. Four datasets including ORL, Yale, COIL20 and
USPS are used for comparison. Similar to the standard experi-
ment settings in previous feature selection methods [34], [37],
[97], [98], for each dataset, the top K features are selected
based on their importance measured by a certain feature
selection method. Then the selected features are used to per-
form k-means clustering. Twowidely used evaluationmetrics
including accuracy (ACC) and normalized mutual informa-
tion (NMI) are employed to evaluate the performance of
clusters. The larger ACC and NMI represent better perfor-
mance. More detailed definition of ACC and NMI can be
found in previous works [34], [97]. We compare our FSP
model with following representative unsupervised feature
selection algorithms:

� Baseline: All of the original features are adopted;
� LS: Laplacian Score [32], in which features are selected

with the most consistency with Gaussian Laplacian
matrix;

� MCFS: Multi-cluster feature selection [99], it uses the
l1-norm to regularize the feature selection process as
a spectral information regression problem;

� RSR: Regularized self-representation feature selec-
tion method [100], which uses the l2;1-norm to mea-
sure the fitting error and also promotes sparsity;

� GLoSS: Global and local structure preserving sparse
subspace learning model for unsupervised feature
selection [101], which can simultaneously realize fea-
ture selection and subspace learning.

� GSR_SFS: Graph self-representation sparse feature
selection [102], in which the traditional fixed similar-
ity graph is used to preserve the local geometrical
structure of data.

� DSRMR: An efficient method for robust unsupervised
feature selection which uses dual self-representation
andmanifold regularization [97].

Several parameters need to be set in previous methods.
For LS, MCFS, SOGFS, SCUFS and RJGSC, we fixed the
neighborhood size to 5 for all the datasets. In order to make
fair comparison of different unsupervised feature selection
methods, we tuned the hyper-parameters for all methods
by a “grid-search” strategy from 10�3; 10�2; 10�1; 1; 10; 102;

�
103g. Because the optimal number of selected features is
unknown, we set different numbers of selected features for
all datasets, and the best clustering results from the optimal
parameters are reported for all the algorithms. The selected
feature number was tuned from 20; 30; . . . ; 90; 100f g. After
completing the feature selection process, we use the k-means
algorithm to cluster the samples using the selected features.
Since the performance of k-means depends on the initial
point, we run it 20 times with random starting points and
report the average value. The final results are shown in
Table 1. As can be seen, the features selected by using our
method can obtain higher ACC andNMI values, which dem-
onstrates that the proposed FSP can also select discrimina-
tive features for learning tasks.

5.6 Convergence Study

In Section 4, theoretical analysis demonstrates that the
algorithm for solving FSP converges well to the local opti-
mum. In this section, we experimentally study the speed of

Fig. 7. An intuitive show of the learned projection matrix and feature
weights on ORL face image database. (a) The learned projection matrix
with d ¼ 100. (b) The feature weight matrix reshaped by the l2-norm of
rows of the projection matrix.

Fig. 6. The classification accuracies versus the parameter (a) � with b ¼ g ¼ 1, (b) b with � ¼ g ¼ 1; and (c) g with � ¼ b ¼ 1 on different databases.
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its convergence. The convergence curves of the objective
value on ORL and USPS datasets are shown in Fig. 8. It
can be seen that the proposed algorithm converges very
fast and almost within 5 iterations.

5.7 Running Time Comparison

In order to evaluate the computational complexity of our
method more intuitively, we compare the running time of
FSP with other methods on the eight benchmark datasets
used in our experiments. All of the algorithms are tested
on a work station with 12 processors (1.70 GHz for each)
and 32.0 GB RAM memory by MATLAB implementations
with MATLAB R2016a. By considering that the running
process may be affected by other possible application
activities, for each algorithm with certain fixed parame-
ters and each dataset, we run it 10 times and the averaged
running time are reported in Table 2. As can be seen,
although our proposed FSP is not the most efficient, its
computational complexity is at the same level as LRPP
and LRE.

6 CONCLUSION

In thiswork,we propose an unsupervised linear feature selec-
tive projection method, named FSP for image feature extrac-
tion and classification by integrating feature selection and
feature extraction into a unified framework. The low-rank
and dual Laplacian regularization terms are embedded into
the model for robustness to noises and preservation of the
intrinsic local manifold geometrical structure of data, respec-
tively. An l2;1-norm regularization is imposed on the projec-
tion matrix to make it capable of selecting important features
for composing the low dimensional subspace. Extensive
experiments are conducted on five well-known databases to
demonstrate the excellent performance of FSP against other
state-of-the-art projection methods in robust image classifi-
cationwith various kinds of noises.
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TABLE 1
Clustering Results (ACC% � std% and NMI% � std%) of Different Feature Selection Algorithms on Different Datasets

Dataset Metrics Baseline LS MCFS RSR GLoSS GSR_SFS DSRMR FSP
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Yale ACC 40.19 � 3.38 40.76 � 2.41 43.97 � 3.33 39.15 � 1.66 37.85 � 1.74 39.76 � 2.08 45.06 � 1.28 47.10 � 2.07
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The best results are highlighted in bold.
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